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Her achievements read as a list of firsts: she was an ex-
pert at programming Harvard’s Mark I, the first large-scale
electromechanical computingmachine; shewas part of the
team who developed the UNIVAC I, the first commercial
computer produced in the United States, for which she
wrote the first compiler; she created the first English-based
data processing language FLOW-MATIC, a principal pre-
cursor for COBOL, one of the most important program-
ming languages for business applications; and when she
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Figure 1. Grace Hopper at the blackboard with
students, 1957.

retired from the Navy as a Rear Admiral, at 79 years old,
she was the oldest active-duty officer in the entire armed
forces. She has been widely lauded for these accomplish-
ments. Named in her honor are: a Naval guided missile
destroyer warship; a super computer at the National En-
ergy Research Scientific Computing Center; several build-
ings and a bridge on Naval bases; a park in Arlington, Vir-
ginia; a major yearly convention for women in computer
science and technology; several prizes, including an early
career award from the Association for Computing Machin-
ery; and a recently renamed residential college at Yale Uni-
versity, among others. Her inspiring story has been the
subject of many books and several upcoming film projects.

However, what is often overlooked in accounts of Hop-
per’s life and work is her mathematical legacy. The results
of her 1934 Yale PhD thesis advised byØysteinOre (which
are detailed in the section “Thesis Work”) are never men-
tioned. Incorrect characterizations of her graduate work
abound; her PhD is routinely cited as being in “mathemat-
ics and physics” or “mathematical physics” or “under com-
puter pioneer Howard Engstrom.” Her training in pure
mathematics and her identity as a mathematician are of-
ten minimized or treated as a kind of incongruous early
chapter in the story of the “Queen of Code.”

But Grace Hopper was most certainly a mathematician.
Asked in an interview [30, p. 7] later in her career what she
would consider herself, she immediately replied: “Math-
ematician.” Then adding wryly: “A rather degraded one
now, because I deal with actual digits instead of letters
and formulas.” Her broad and rigorous mathematical ed-
ucation constituted what she called her “basic thinking.”
She was, once and forever, a mathematician: “I’ve been
called an engineer, a programmer, systems analyst and ev-
erything under the sun but I still think my basic training

Figure 2. Grace Hopper teaching a COBOL class,
1961.

Figure 3. Grace Hopper with programmers at the
console of UNIVAC I, 1957.

is mathematics.” For the first time, using archival mate-
rial from Yale University’s collections, this article will at-
tempt to illuminate Hopper’s foundational mathematical
training as well as the specific contributions of her thesis
research.

Academic Training

As both an undergraduate and a graduate student, Grace
Hopper pursued a mathematical education. In 1928, she
earned her BA from Vassar College, with her coursework
primarily in mathematics, and secondarily split between
economics and physics. She then enrolled as a graduate
student in the Department of Mathematics at Yale Univer-
sity, receiving her MA in 1930 with a thesis titledOn Carte-
sian Ovals and her PhD in 1934 with a dissertation titled
New Types of Irreducibility Criteria. Hopper took courses in
a wide variety of fields, as her graduate transcript reveals
(see Figure 5). Her PhD advisor was Norwegian algebraist
Øystein Ore, who had recently been recruited to Yale and
“breathed new life into an aging department” [32, p. 10].
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Figure 4. Grace Murray’s senior portrait from the
Vassar yearbook, 1928.

Notable on Hopper’s transcript are Ore’s courses on Alge-
braic Numbers, which had never been offered until his ar-
rival the previous year [32, p. 10]. Hopper was awarded
numerous prestigious dissertation fellowships during her
years at Yale and was one of the first dozen women (go-
ing back to 1895) to earn doctoral degrees in mathematics
from the university, see [16]. In 1931, while still a graduate
student, Hopper started a faculty position at Vassar, even-
tually being promoted to assistant professor in 1939 and
associate professor in 1944. During the 1941–42 academic
year, Hopper was granted a half-time leave from Vassar to
take courses with Richard Courant at New York Univer-
sity’s Center for Research and Graduate Education (later to
become the Courant Institute of Mathematical Sciences).

Numerous distinguished mathematicians can be count-
ed as Hopper’s mentors. At Vassar, she studied with Henry
Seely White (1861–1943), a prominent American geome-
ter who received his PhD under Felix Klein in 1891 and
served as President of the AMS (1906–1908), andGertrude
Smith (1874–1965), whom Hopper declared “taught the
best calculus anybody ever taught” [30, p. 21]. At Yale, she
was influenced by James P. Pierpont (1866–1938) and was
a close contemporary of Howard Engstrom (1902–1962),
who received his PhD under Ore in 1929, five years before
Hopper, and who eventually returned to Yale to take up a
faculty position. In 1941, Engstrom joined the Navy and
did foundational work in cryptography; later, he became a
deputy director of the National Security Agency, see [12].

Engstrom encouraged several mathematicians, includ-
ing Hopper and the famous group theorist Marshall Hall,
Jr., to join Naval intelligence during World War II. Hall,
who received his PhD underOre in 1936, recalls that while
Ore was his “nominal” advisor, he received “far more help
and direction” from Engstrom, see [18]. In interviews over
the years, Hopper repeatedly describes Engstrom as one
of her “instructors.” Though no course with Engstrom is
listed onHopper’s transcript, hismentorship seems to have

Year Course Name Instructor
1928–29 Higher Algebra Lucius Terrell Moore

Foundations of Real Variables Wallace Alvin Wilson
Foundations of Geometry Percey Franklyn Smith
Analytic Geometry I Joshua Irving Tracey

1929–30 Algebraic Numbers I Øystein Ore
Differential Geometry James K. Whittemore
Finite Groups Øystein Ore

1930–31 Algebraic Numbers II Øystein Ore
Calculus of Variations Egbert J. Miles
Non Euclidean Geometry James P. Pierpont
Mathematical Statistics Øystein Ore

1931–32 Dissertation Øystein Ore
1932–33 Dissertation Øystein Ore
1933–34 Dissertation Øystein Ore

Figure 5. Grace Murray Hopper’s original Yale
Graduate School transcript lists: her courses and the
grades she received (on an Honors/High
Pass/Pass/Fail scale), the dates of her language
exams (which years later became fodder for her
stories about the interchangeability of written
languages [30, pp. 22–23]), as well as her yearly
tuition and the date of her election to Sigma Xi, the
scientific research honor society. Transcription
includes full names of her professors.

been as important for Hopper as it was for Hall. What
is clear from the historical record is that Hopper did not
“receive her PhD under Engstrom” as several authors have
claimed (see [16]), perhaps in an effort to link the early
histories of two pioneers in the field of computers. When
Hopper enlisted in the Navy, she expected to be assigned
to the Communications Supplementary Activity (Navy
Communications Annex) in Washington, DC, where En-
gstrom led a top-secret team building cryptographic
computingmachines. Though she was eventually assigned
to work on the Mark I at Harvard, Hopper and Engstrom
stayed life-long friends.
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Several of Ore’s graduate students from the early 1930s
tackled similar research problems on generalized irreduc-
ibility criteria for polynomials. His two male students,
Harold Dorwart (PhD 1931) and Casper Shanok (PhD
1933), produced dissertations very close in subject to Hop-
per’s work. Dorwart published a number of articles from
his thesis work: in the Annals of Mathematics [7], in the
Duke Mathematical Journal [8], and a survey in the Amer-
ican Mathematical Monthly [9, p. 373] that mentions and
cites Hopper. Almost immediately following his gradua-
tion, Shanok’s thesis [45] was published in theDuke Math-
ematical Journal (though he did not appear to continue in
academia). Distressingly, Ore’s two female graduate stu-
dents, Hopper and Miriam Becker (PhD 1934), never pub-
lished their thesis work at all. Both would, however, go on
to long careers (Becker would eventually join the faculty of
the City University of New York), even if their earliest work
still remains unknown.

As a junior faculty member at Vassar, Hopper was given
“all the courses nobody else wanted to teach.” But she was
such an innovative teacher that classes like technical draw-
ing, trigonometry, calculus, probability, and finite differ-
ence method for numerical solutions of differential equa-
tions were suddenly popular [30, pp. 16–21]. On top of
her demanding teaching schedule of five or six courses,
she also audited two courses per year, including basic as-
tronomy, statistical astronomy, geology, philosophy, bac-
teriology, biology, zoology, plant horticulture, chemistry,
physics, economics, and architecture. She also took a
course on cryptography sponsored by the Navy [30, p. 27].

Later in life, Hopper would reflect on the “inestimable
value” of her broad education as she shaped the new field
of computers [30, p. 17]. For example, it was in a chemistry
course when she learned the essential concepts of round-
off and truncation errors [27, p. 46]. Her years teaching
technical drawing courses enabled her to invent a new me-
thod for diagramming the relay timing and associated cir-
cuitry (see Figure 6) for the Mark I (formally known as the
Automatic Sequence Controlled Calculator) control man-
ual [22], see [30, pp. 32–33]. Hopper summed it up quite
neatly in a 1986 interview on The Late Show with David Let-
terman [21]. During a discussion of her Mark I days, Let-
terman asked, “Now, how did you know so much about
computers then?” “I didn’t,” Hopper immediately replied,
with some bemusement. “It was the first one.”

But arguably, it was studying and teaching mathematics
—thinking about symbolic language and how to commu-
nicate meaning with symbols—that was most pivotal in
Hopper’s early work on computers. Her invention of var-
ious types of early compilers enabled the translation of
mathematical statements or English words into computer
code.

Figure 6. Wiring diagram of a Mark I table relay
encoding 𝜋 [22, p. 91].

Manipulating symbolswas fine formathematicians
but it was no good for data processors who were
not symbol manipulators. Very few people are re-
ally symbolmanipulators. If they are they become
professional mathematicians, not data processors.
It’s much easier for most people to write an Eng-
lish statement than it is to use symbols. So I de-
cided data processors ought to be able to write
their programs in English, and the computers
would translate them intomachine code. [13, p. 3]

One of Hopper’s most academically rewarding experi-
ences was taking courses from Richard Courant at New
York University in 1941–1942, during her half-time leave
funded by a Vassar Faculty Fellowship. Hopper found
Courant to be “one of the most delightful people to study
with I’ve ever known inmy life.” It was, she recalled, “a per-
fectly gorgeous year. Of course, he scolded me at intervals,
just as all of the others did because I kept doing unortho-
dox things and wanting to tackle unorthodox problems”
[30, p. 28]. While there, she studied calculus of variations,
differential geometry, and perhaps most fortuitously, she
took a government-sponsored defense training course on
methods of solutions to partial differential equations in-
volving finite differences taught by Courant, see [30, p. 24].
Hopper later learned that her involvement in this course
was in her Navy file and was one of the determining factors
in her initial assignment: to program Harvard’s Mark I, im-
plementing calculations for the war effort including some
for John von Neumann’s work on the Manhattan Project.

The attack on Pearl Harbor, which took place during her
year studying with Courant, forever changed the direction
of Hopper’s life. Her great grandfather had been in the
Navy, and by the summer of 1942, many of Hopper’s fam-
ily members were joining the armed services: her husband
(from whom she was already separated) and brother vol-
unteered for the draft; her female cousins joined through
the Women’s Army Corps (WAC) and the Navy’s Women
Accepted for Volunteer Emergency Service (WAVES) pro-
gram; her mother served on the Ration Board; and her re-
tired father went back towork and served on the local Draft
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Figure 7. Grace Hopper standing behind a car parked
near Cruft Lab, Harvard University, ca. 1945–1947.

Board, see [47, p. 20]. Hopper was eager to enlist in the
Navy, but was rejected when she failed to meet the mini-
mum weight requirement for her height and was consid-
ered too old for enlistment. In the meantime, she taught
an accelerated summer calculus course at Barnard College
for women training for war-related posts. But her profes-
sion was also an impediment.

Mathematicianswere [in] an essential industry and
you could not leave your job to go in the services
without permission [fromboth theNavy and one’s
employer]. You couldn’t even transfer jobs with-
out permission... And Iwas beginning to feel pretty
isolated sitting up there, the comfortable college
professor—all I was doing wasmore teaching, and
I wanted very badly to get in and so I finally gave
Vassar an ultimatum that if they wouldn’t release
me I would stay out of work for six months be-
cause I was going into the Navy, period. [30, p. 25]

Eventually, she obtained a waiver for the weight require-
ment and a leave of absence from Vassar, and trained at
the Naval Reserve Midshipmen’s School at Smith College
in Northampton, Massachusetts in the spring of 1944. Af-
ter graduating first in her class, she was commissioned lieu-
tenant junior grade.

On July 2, 1944, Hopper reported for duty at the Bureau
of Ships Computation Project at Harvard under the com-
mand of Howard Aiken, and began work on the Mark I.
Aside from programming the Mark I, and its successor, the
Mark II, she was assigned the job of compiling notes about
the operation of the Mark I into a book [22]. Hopper

Figure 8. Captain Grace Hopper, ca. 1975.

edited the volume and wrote several of its sections, includ-
ing an introduction containing the first ever scholarly ac-
count of the history and development of calculating ma-
chines [22, Chapter I]. “Nobody had done this before,”
Hopper later said. “[The] history of computers had never
been put together.” It was, to use her words, “really a job”
[30, p. 32].

Thesis Work

Grace Hopper’s PhD thesis work with Øystein Ore con-
cerned irreducibility criteria for univariate polynomials over
the field of rational numbers. Though her work was never
published, it was presented to an American Mathematical
Society meeting on March 30, 1934 in New York with an
abstract appearing in the Bulletin of the AMS [20]. The only
apparent extant text of her thesis [19] remains in Yale’s
archives, and a detailed account of her mathematical work
has never before appeared in the literature.

In this section, we provide an explanation of GraceHop-
per’s thesis work, the central theme of which concerns nec-
essary conditions for the irreducibility of univariate poly-
nomials with rational coefficients based on their Newton
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polygons, see the subsection “Irreducibility via Newton
polygons.” The connection between the decomposabil-
ity of polynomials and the slopes of their Newton poly-
gons was initiated at the turn of the twentieth century by
Dumas [10], with further refinements by Kürschak [26],
Ore [35], and Rella [41]. In her work, Hopper obtains
new irreducibility criteria by considering an Archimedean
analogue of the Newton polygon, see the subsection
“Archimedean Newton polygon.” While this Archimedean
Newton polygon dates back at least to an 1893 paper of
Hadamard [17, §4, p.174], and was later developed fur-
ther in a 1940 paper ofOstrowski [36, pp. 106, 132] and by
Valiron [46, Ch. IX, pp. 193–202], its use for establishing
irreducibility criteria seems to be a novel feature of Hop-
per’s work.

Irreducibility of polynomials. Anonconstant polynomial

𝑓(𝑥) = 𝑎𝑛𝑥𝑛 +𝑎𝑛−1𝑥𝑛−1 +⋯+𝑎1𝑥 + 𝑎0

whose coefficients𝑎0,… ,𝑎𝑛 are rational numbers is called
irreducible if there is no way to write 𝑓(𝑥) as a product
𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥) where 𝑔(𝑥) and ℎ(𝑥) are themselves
nonconstant polynomials with rational coefficients. The
study of irreducible polynomials is one of the foundations
of modern field theory and often involves quite a bit of
number theory as well.

For example, that 𝑥2 − 2 is irreducible is equivalent to
the classical fact that √2 is irrational. More generally, a
quadratic polynomial

𝑎𝑥2 +𝑏𝑥+ 𝑐
is irreducible if and only if its discriminant 𝑏2−4𝑎𝑐, which
appears in the quadratic formula, is not a square.

When 𝑝 is an odd prime number, that the cyclotomic
polynomial

Φ𝑝(𝑥) = 𝑥𝑝−1 + 𝑥𝑝−2 +⋯+ 𝑥+ 1
is irreducible was first proved by Gauss in Disquisitiones
Arithmeticae and is related to the arithmetic of the𝑝th roots
of unity 𝑒2𝜋𝑖𝑘/𝑝 and the (non-)constructibility of the reg-
ular 𝑝-gon with compass and straightedge.

In 1929, Schur [44] proved that for𝑛 ≥ 1, the truncated
exponential series

1 + 𝑥+ 𝑥2

2! +⋯+ 𝑥𝑛

𝑛!
is irreducible with an argument that used a generalization
of Bertrand’s Postulate, whose original statement—that for
any positive integer 𝑘 there exists a prime number 𝑝 such
that𝑘 < 𝑝 ≤ 2𝑘—was conjectured by Bertrand and proved
by Chebyshev. This result, and its generalizations, implies
the irreducibility of various families of orthogonal poly-
nomials, such as those of Laguerre and Hermite type, see
[9, §4].

Several standard methods for testing irreducibility are
taught in a basic course on field and Galois theory. The
most elementary are reduction modulo a prime number
and the “rational root test.” A more powerful, and yet easy
to use, tool is Eisenstein’s criterion: assuming that 𝑓(𝑥) has
integer coefficients, if for some prime number 𝑝, the co-
efficients satisfy 𝑝|𝑎𝑖 for all 𝑖 ≠ 𝑛, as well as 𝑝 ∤ 𝑎𝑛
and 𝑝2 ∤ 𝑎0, then 𝑓(𝑥) is irreducible. In fact, a state-
ment equivalent to Eisenstein’s Criterion was first proved
by Schönemann [43] in a 1846 paper that Eisenstein even
cites in his own paper [11] in 1850, hence the criterion was
often called the Schönemann–Eisenstein theorem in liter-
ature from the early twentieth century, see [5] for a discus-
sion.

Irreducibility via Newton polygons. In the late nineteenth
century and early twentieth century, various generalizations
of the Eisenstein criterion, depending on the divisibility
properties of the coefficients of 𝑓(𝑥), appeared in work of
Königsberger, Netto, Bauer, Perron, Ore, and Kahan. Fi-
nally, these were all mostly subsumed by an observation of
Dumas [10], that such criteria could be rephrased in terms
of the irreducibility of the Newton polygon associated to
𝑓(𝑥). This history is very well summarized in the histori-
cal introduction to Hopper’s thesis [19, Chapter I] and in
Dorwart’s survery article [9].

Given a prime number 𝑝, we consider the 𝑝-adic val-
uation 𝑣𝑝 on ℚ. The Newton polygon 𝑁𝑝(𝑓) of the poly-
nomial 𝑓(𝑥) = ∑𝑖 𝑎𝑖𝑥𝑖 ∈ ℚ[𝑥] with respect to 𝑝 is the
lower convex hull of the points (𝑖, 𝑣𝑝(𝑎𝑖)) in ℝ2. We as-
sume that 𝑎0 ≠ 0. If 𝑎𝑖 = 0 for some 𝑖 ≥ 0 then by defi-
nition 𝑣𝑝(𝑎𝑖) = +∞, hence for the purposes of taking the
lower convex hull, we can ignore such zero coefficients. In-
tuitively, we can imagine a large rubber band surrounding
these points inℝ2, which each have small nails sticking up
from them; as we stretch the rubber band up toward +∞,
we obtain the Newton polygon as the lower sequence of
line segments formed by the stretched rubber band.

The central insight of Dumas [10, p. 217] is that the
Newton polygon 𝑁𝑝(𝑔 ⋅ ℎ) of the product of polynomi-
als 𝑔(𝑥) and ℎ(𝑥) is formed by composing the line seg-
ments of the Newton polygons 𝑁𝑝(𝑔) and 𝑁𝑝(ℎ) in or-
der of increasing slope, an operation that we could denote
𝑁𝑝(𝑔)∘𝑁𝑝(ℎ) and call the Dumas sum. This was general-
ized in [3] and [6], and by many later authors, including
to the more general context of (multivariate) polynomials
over valued fields.

If the projections to the 𝑥- and 𝑦-axes of the line seg-
ments of theNewton polygon of 𝑓(𝑥) are denoted 𝑙1,… , 𝑙𝑟
and 𝑘1,… , 𝑘𝑟, respectively, we denote by 𝑒𝑖 = gcd(𝑙𝑖, 𝑘𝑖)
and write 𝑙𝑖 = 𝑒𝑖𝜆𝑖. Then Dumas [10, p. 237] deduces a
general irreducibility criterion: 𝑓(𝑥) can only have factors
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Figure 9. The Newton polygon (with 𝑝 = 2) of
𝑔(𝑥) = 𝑥2 + 6𝑥+ 4 in red, of
ℎ(𝑥) = 𝑥4 + 2𝑥3 + 10𝑥2 + 48𝑥+ 16 in blue, and
𝑔(𝑥)ℎ(𝑥) =
𝑥6 +8𝑥5 +26𝑥4 +116𝑥3 +344𝑥2 +288𝑥+ 64, with
sides colored appropriately showing the Dumas
sum.

Figure 10. Graphical depiction of the Minkowski sum
of two classical Newton polygons of bivariate
polynomials. Hand drawn by Grace Hopper
[19, p. 24].

of degree 𝑚 that can be expressed in the form

𝑚 =
𝑟
∑
𝑖=1

𝜇𝑖𝜆𝑖

where 𝜇𝑖 ∈ {0, 1,… , 𝑒𝑖} for each 1 ≤ 𝑖 ≤ 𝑟.
For example, if 𝑁𝑝(𝑓) consists of a single line segment

that does not pass through any lattice point in the plane,
then 𝑓(𝑥) is irreducible. This immediately gives the Eisen-
stein criterion. Generalizations and refinements of this
idea were developed by Fürtwangler, Kürschak, and Ore,
see [19, Chapter I, §4].

The classical Newton polygon associated to a bivariate
polynomial 𝑓(𝑥, 𝑦) over a field, defined as the convex hull
of the weight vectors (𝑖, 𝑗) inℝ2 of all monomials 𝑥𝑖𝑦𝑗 ap-
pearing with nonzero coefficients in 𝑓(𝑥, 𝑦), first appears
in a 1676 letter from Newton to Oldenberg [23] and was
well known to Newton and his followers throughout the
18th and 19th century, cf. [4, Chapter XXX, §24, Histor-
ical Note]. Though it must have been well known, the
observation that the classical Newton polygon of a prod-
uct of polynomials is the Minkowski sum (see Figure 10)
of their classical Newton polygons does not seem to be
clearly enunciated in the literature until the theses of
Shanok [45, §2, p. 103, footnote 3] andHopper [19, Chap-
ter II, §1].

Archimedean Newton polygon. A completely different
type of irreducibility criterion depending on the relative
magnitudes of the absolute values of the coefficients was
introduced by Perron [40]. (We now assume that 𝑓(𝑥) is
a monic polynomial with coefficients in ℤ.) These crite-
ria depend on the following simple observation: if 𝑛 − 1
of the (complex) roots of 𝑓(𝑥) have absolute value < 1,
then 𝑓(𝑥) is irreducible. Indeed, if 𝑓(𝑥) has a noncon-
stant factor (which by Gauss’s Lemma can be taken to be
monic with integer coefficients), then all of its roots will
have absolute value< 1, but their product is the (integral)
constant term, a contradiction. The resulting irreducibility
criterion is, letting𝐴 = |𝑎0|+⋯+|𝑎𝑛−1|+1: if the coeffi-
cients satisfy |𝑎𝑛−1| > 1

2𝐴, then 𝑓(𝑥) is irreducible. There
is a similar criterion if all but a pair of complex conjugate
roots have absolute value < 1.

To take into account the relative magnitudes of the coef-
ficients, Hopper [19, Chapter III] considers anArchimedean
Newton polygon associated to a polynomial 𝑓(𝑥) with com-
plex coefficients. Define 𝑁∞(𝑓) to be the lower convex
hull of the set of points (𝑖,− log |𝑎𝑖|) in ℝ2. As before, if
𝑎𝑖 = 0 for some 0 < 𝑖 < 𝑛, then −log |𝑎𝑖| = +∞, so
can be ignored for the purposes of taking the lower convex
hull. (In fact, Hopper defines themirror image of this poly-
gon.) This is a natural generalization of the Newton poly-
gon with respect to a prime 𝑝 considered above. Indeed,
the negative absolute logarithm can be considered as an
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Archimedean analogue of a valuation; writing 𝑣∞(𝑥) =
− log |𝑥|, then |𝑥| = 𝑒−𝑣∞(𝑥) is in analogy with the non-
Archimedean 𝑝-adic absolute value |𝑥|𝑝 = 𝑝−𝑣𝑝(𝑥).

Later in the twentieth century, the Archimedean New-
ton polygon was, in various guises, used in a variety of con-
texts, including: by Khovansky [25] (cf. [42]) in an alge-
braic reformulation of his study of exponential equations
and eventually for combinatorial invariants attached to di-
visors on algebraic varieties; by Mueller and Schmidt [33],
[34] for bounding the number of solutions to Thue equa-
tions; and by Passare and his collaborators (see
e.g., [38], [37, §2.1], [1]) and Mikhalkin (see e.g., [39]) in
the theory of amoebas and in tropical geometry. The gen-
esis of the Archimedean Newton polygon going back to
Hadamard, as well as most of these later uses, stems from
the fact that its geometry is related to the absolute values
of the roots of the polynomial.

Taking a different approach, Hopper [19, Chapter III]
studies the Archimedean Newton polygon of a product of
polynomials, in analogy with Dumas’s result in the non-
Archimedean case: how do 𝑁∞(𝑔) and 𝑁∞(ℎ) compare
with 𝑁∞(𝑔 ⋅ ℎ)? Hopper remarks that if the analogue of
Dumas’s product result held for𝑁∞, then irreducibility cri-
teria such as Perron’s, which depend on the relative magni-
tude of the coefficients, would follow immediately. How-
ever, −log |𝑥| is not a valuation as there is an error term
in relating −log |𝑥 + 𝑦| with min(− log |𝑥|,− log |𝑦|),
hence such an exact product formula is not expected. How-
ever, Hopper goes on to prove bounds on how far apart
𝑁∞(𝑔 ⋅ ℎ) can be from 𝑁∞(𝑔) ∘ 𝑁∞(ℎ). To state these
bounds, if 𝑓(𝑥) ∈ ℂ[𝑥] is a polynomial of degree 𝑛 ≥ 1,
we consider 𝑁∞(𝑓) as a piecewise-linear function of 𝑡 on
the real interval [0, 𝑛].

Theorem 1 (Hopper [19, Chapter III, §3–5, pp. 33–38]).
Let 𝑔(𝑥), ℎ(𝑥) ∈ ℂ[𝑥] be monic polynomials and 𝑛 =
deg(𝑔) + deg(ℎ). Then

−log(1 + 𝑛
2) ≤ (𝑁∞(𝑔 ⋅ ℎ)(𝑡) − (𝑁∞(𝑔) ∘𝑁∞(ℎ))(𝑡)

≤ log(3 ⋅ 2𝑡(𝑛−𝑡))

for all 𝑡 ∈ [0, 𝑛].

More precisely, Hopper establishes an upper bound, as
in Theorem 1, that depends on the sharpness of the bends
in 𝑁∞(𝑔) ∘ 𝑁∞(ℎ), defined as the (exponential of the)
ratio of slopes of consecutive sides. Near very sharp bends,
the two polygons are very close; the careful analysis [19,
Chapter III, §5] of bends with small sharpness gives the
upper bound. She remarks that the “result can however
probably be considerably improved upon” due to certain
estimates employed in the proof [19, p. 38].

The Newton–Hopper polygon. In [19, Chapter II, §2],
Hopper introduces a new construction of a convex poly-
gon associated to a monic polynomial with integer coef-
ficients that takes into account both the divisibility (with
respect to a fixed prime 𝑝) and the magnitudes of the coef-
ficients. We call this the Newton–Hopper polygon 𝑁𝐻𝑝(𝑓)
associated to 𝑓(𝑥) = ∑𝑖 𝑎𝑖𝑥𝑖 ∈ ℤ[𝑥]. It is defined by
writing

𝑓(𝑥) = ∑
𝑖
∑
𝑗
𝑟𝑖𝑗𝑝𝑗𝑥𝑖

where 𝑟𝑖𝑗 ≠ 0 and satisfy −𝑝 < 𝑟𝑖𝑗 < 𝑝, and then taking
the convex hull of the points (𝑖, 𝑗) in ℝ2. This construc-
tion yields a convex polygon whose “lower half” is 𝑁𝑝(𝑓)
and whose “upper half” is the upper convex hull of the
points (𝑖, ⌊log𝑝 |𝑎𝑖|⌋), so that the upper half is approx-
imately −𝑁∞(𝑓). The analogous bounds in Theorem 1
hold for the upper half of the Newton–Hopper polygon
of a product.

Hopper’s strategy [19, Chapter IV] is then to start with
a polynomial 𝑓(𝑥) ∈ ℤ[𝑥], plot 𝑁𝐻𝑝(𝑓) (in black ink),
and then plot (in red and blue ink) the limits of the upper
and lower bounds in Theorem 1 away from 𝑁𝐻𝑝(𝑓). Fi-
nally, if one can verify that each possible polygon within
the region bounded between the (red and blue) limits can-
not be decomposed as a Dumas sum of Newton–Hopper
polygons (where we formally apply Dumas composition
to the upper half and lower half separately) of lower de-
grees, then 𝑓(𝑥)must be irreducible. This observation pro-
vides new irreducibility criteria that simultaneously gener-
alize those depending on the divisibility and the magni-
tudes of the coefficients.

Hopper then proceeds with a careful analysis of vari-
ous general situations in which this occurs, and then pro-
duces families of sparse polynomials that satisfy these cri-
teria. Some of her families in [19, Chapter IV, §5] cannot
be proven to be irreducible solely using either divisibility
properties or relative magnitude properties of the coeffi-
cients on their own. For example, the polynomial

𝑓(𝑥) = 𝑥7 ± (𝑝11 +𝑝)𝑥5 ±𝑝4,

for any prime 𝑝 > 3 ⋅ 249/4 > 14, 612 (e.g., 𝑝 = 14, 621
is the first such prime), is irreducible. Similarly, the poly-
nomial

𝑓(𝑥) = 𝑥9 ± (𝑝6 +𝑝)𝑥3 ± (𝑝9 +𝑝3)𝑥2 ±𝑝3, (1)

for any𝑝 > 3⋅281/4 > 3, 740, 922 (e.g.,𝑝 = 3, 740, 923
is the first such prime) is irreducible, see Figure 11. For
all primes 𝑝 below these bounds, a computer algebra sys-
tem can verify the irreducibility of the above polynomials.
Also, the following infinite family of polynomials

𝑓(𝑥) = 𝑥𝑛 ± 𝑘𝑥2 ± 𝑙𝑝2𝑣+1,

MARCH 2019 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 337



Figure 11. The Newton–Hopper polygon of the
polynomial (1), in black, with the upper and lower
bounds in Theorem 1 in red and blue, respectively.
Hand drawn by Grace Hopper [19, p. 55].

where 𝑛≥3, 𝑣≥3, 0<𝑘<𝑝2(𝑣−2), 𝑝 ∤ 𝑘, 0< 𝑙<𝑝, and
𝑝 > 3 ⋅ 2𝑛2/4, are all irreducible. Similarly, the following
infinite family of polynomials

𝑓(𝑥) = 𝑥𝑛 ± 𝑘𝑝𝑥±𝑚𝑝𝑣,
where 𝑛 ≥ 2, 𝑣 ≥ 4, 0 < 𝑘 < 𝑝2(𝑣−2), 0 < 𝑚 < 𝑝𝑣−3,
𝑝 ∤ 𝑘𝑚, and 𝑝 > 3 ⋅ 2𝑛2/4, are all irreducible.

ACKNOWLEDGMENTS. The author would like
to thank retired Yale Mathematics librarian Paul
Lukasiewicz for introducing him to the story of Grace
Hopper; head of Grace Hopper College, Julia Adams,
for her support and stimulating conversations; Grace
Hopper’s nephew and great-niece, Roger and Deborah
Murray, for their encouragement of this article; Yale
University archivist, Michael Lotstein, for his tireless
assistance in locating Hopper-related archival material;
Vassar College associate registrar, Kathleen Giblin, for
providing and deciphering Hopper’s college transcript;
Sam Payne for productive mathematical discussions;
and Jennifer Raab for her generous help during the
preparation of this article. Finally, the author is grate-
ful to Judy Green for answering many questions about
Hopper’s history, and for her pioneering study with

Jeanne LaDuke [13], [14], which is an indispensable
resource on Hopper’s life and work.

References

[1] Avendaño M, Kogan R, Nisse M, Rojas JM, Metric es-
timates and membership complexity for Archimedean
amoebae and tropical hypersurfaces, Journal of Complexity
46 (2018), 45–65. MR3774347

[2] Beyer K, Grace Hopper and the Invention of the Information
Age, MIT Press, Cambridge, MA, 2009.

[3] Blumberg H, On the factorization of expressions of vari-
ous types, Trans. Amer. Math. Soc. 17 (1916), no. 4, 517–
544. MR1501056

[4] Chrystal G, Algebra, Part II, 2nd ed., Adam & Charles
Black, London, 1900. MR0121327

[5] Cox DA, Why Eisenstein proved the Eisenstein criterion
and why Schönemann discovered it first, American Mathe-
matical Monthly 118 (2011), no. 1, 3–31. MR2795943

[6] Dines LL, A theorem on the factorization of polynomials
of certain types, Bulletin of the AMS 29 (1923), 440.

[7] Dorwart HL, Ore Ø, Criteria for the irreducibility of poly-
nomials, Ann. of Math. (2) 34 (1933), no. 1, 81–94; erra-
tum Ann. of Math. (2) 35 (1934), no. 1, 195. MR1503098

[8] Dorwart HL, Concerning certain reducible polynomials,
Duke Math. J. 1 (1935), no. 1, 70–73. MR1545865

[9] Dorwart HL, Irreducibility of polynomials, Amer. Math.
Monthly 42 (1935), no. 6, 369–381. MR1523399

[10] Dumas G, Sur quelques cas d’irréductibilité des
polynômes coefficients rationnels, Journal de Mathéma-
tiques Pures et Appliquées (6) 2 (1906), 191–258.

[11] Eisenstein G, Über die Irreductibilität und einige andere
Eigenschaften der Gleichung, vonwelcher die Theilung der
ganzen Lemniscate abhängt, Journal für die reine und ange-
wandte Mathematik 39 (1850), 160–179. MR1578663

[12] Engstrom HT, Scientist, Was 59: One of the Developers
of Univac Computer Dies,New York Times, 10 March 1962,
p. 21.

[13] Gilbert L, Moore G, Particular Passions: Grace Murray
Hopper, chapter in Women of Wisdom: Talks With Women
Who Shaped Our Times, Lynn Gilbert Inc., 1981.

[14] Green J, LaDuke J, Pioneering Women in American Math-
ematics: The Pre-1940 PhD’s, History of Mathematics, vol.
34, American Mathematical Society, Providence, RI, 2008.
MR2464022

[15] Green J, LaDuke J, Supplementary Material for Pioneer-
ing Women in American Mathematics: The Pre-1940 PhD’s,
available at http://www.ams.org/publications/
authors/books/postpub/hmath-34. MR2919139

[16] Green J, LaDuke J, Letter to the Editor, Isis 102 (2011),
no. 1, pp. 136–137. MR1983738

[17] Hadamard J, Étude sur les propriétés des fonctions en-
tières et en particulier d’une fonction considérée par Rie-
mann, Journal de Mathématiques Pures et Appliquées (4) 9
(1893), 171–216. MR0220564

[18] Hall M Jr, Mathematical Biography: Marshall Hall Jr.,
in A Century of Mathematics in America, Part I, History
of Mathematics, vol. 1, Peter Duran, Richard Askey, Uta

338 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 3



C. Merzbach, eds., American Mathematical Society, Prov-
idence, RI, 1988, pp. 367–374. MR1563496

[19] Hopper GM, New types of irreducibility criteria, PhD
dissertation, Yale University, May 1934, available at
http://math.yale.edu/grace-murray-hopper.
MR2936986

[20] Hopper GM, Ore Ø, New types of irreducibility criteria,
Bull. Amer. Math. Soc. 40 (1934), abstract no. 126, 216.
MR2936986

[21] Late Night with David Letterman, season 5, episode 771,
October 2, 1986, National Broadcasting Company, New
York, NY.

[22] A Manual of Operation for the Automatic Sequence Con-
trolled Calculator, by the staff of Computation Laboratory,
Annals of the Computation Laboratory of Harvard Uni-
versity, vol. 1, Harvard University Press, Cambridge, MA,
1946. MR0020856

[23] Newton I, letter to Henry Oldenburg dated 1676 Oct
24, in The Correspondence of Isaac Newton: Volume 2, 1676–
1687, pp. 126–127, Cambridge University Press, 1960.
MR551872

[24] Grace Murray Hopper 1906–1992, Notices Amer. Math.
Soc. 39 (1992), 320. MR1153173

[25] Hovansky A, Sur les racines complexes des systèmes
’déquations algébriques comportant peu de termes, C. R.
Acad. Sci. Paris Ser. I Math. 292 (1981), no. 21, 937–940.
MR625726

[26] Kürschák J, Irreduzible Formen, Journal für die Mathe-
matik 152 (1923), 180–191. MR1581009

[27] Grace Murray Hopper (1906–1992), interview by Beth
Luebbert and Henry Tropp, 5 July 1972, Computer Oral
History Collection, Archives Center, National Museum
of American History, Smithsonian Institution, transcript
available at http://amhistory.si.edu/archives/
AC0196_hopp720507.pdf

[28] MacLane S, A construction for absolute values in polyno-
mial rings, Trans. Amer. Math. Soc. 40 (1936), no. 3, 363–
395. MR1501879

[29] Mathews S, Mogensen M, Grace Brewster Mur-
ray Hopper, student paper for Appalachian State
University course Women and Minorities in Math,
taught by Sarah J. Greenwald, Spring 2001, available
at http://www.cs.appstate.edu/~sjg/wmm/
student/hopper/hopperp.htm.

[30] Grace Murray Hopper (1906–1992), interview by
Uta C. Merzbach, July 1968, Computer Oral His-
tory Collection, Archives Center, National Museum of
American History, Smithsonian Institution, transcript
available at http://amhistory.si.edu/archives/
AC0196_hopp680700.pdf.

[31] Voice of America interviews with eight American women
of achievement: Grace Hopper, Betty Friedan, Nancy Lan-
don Kassebaum, Mary Calderone, Helen Thomas, Julia
MontgomeryWalsh,Maya Angelou, Nancy Clark Reynolds,
interviews by Chantal Mompoullan, Voice of America,
United States Information Agency, Washington, DC, 1985.

[32] MostowGD, Science at Yale: Mathematics, Yale University
Press, New Haven, CT, 2001.

[33] Mueller J, Schmidt WM, Thue’s equation and a conjec-
ture of Siegel, Acta Math. 160 (1988), no. 3–4, 207–247.
MR945012

[34] Mueller J, Schmidt WM, On the Newton Polygon,
Monatshefte für Mathematik, 113 (1992), no. 1, 33–50.
MR1149059

[35] Ore O, Zur Theorie der Irreduzibilitätskriterien, Mathe-
matische Zeitschrift 18 (1923), 278–288. MR1544631

[36] Ostrowski A, Recherches sur la méthode de Graeffe et les
zéros des polynomes et des séries de Laurent, Acta Math. 72
(1940), 99–155. MR0001944

[37] Passare MJ, Rojas M, Shapiro B, New multiplier se-
quences via discriminant amoebae, Mosc. Math. J. 11
(2011), no. 3, 547–560. MR2894430

[38] Passare M, Rullgård H, Amoebas, Monge-Ampère mea-
sures, and triangulations of the Newton polytope, Duke
Math. J. 121 (2004), no. 3, 481–507. MR2040284

[39] Mikhalkin G, Enumerative tropical algebraic geometry
in ℝ2, Journal of the American Mathematical Society 18
(2005), no. 2, 313–377. MR2137980

[40] PerronO, Neue Kriterien für die Irreduzibilität algebrais-
cher Gleichungen, Journal für Mathematik 132 (1907), 288–
307. MR1580727

[41] Rella T, Ordnungsbestimmungen in Integritätsbereichen
undNewtonische Polygone, Journal für die Mathematik 158
(1927), 33–48. MR1581128

[42] Risler JJ, Complexité Géométrie Réelle, Sém. Bourbaki
(1984-85), no. 637, Astérisque 133–134 (1986), 89–100.

[43] Schönemann T, Von denjenigen Moduln, welche Poten-
zen von Primzahlen sind, Journal für die reine und ange-
wandte Mathematik 32 (1846), 93–118. MR1578516

[44] Schur I, Einige Sätze über Primzahlen mit Anwen-
dungen auf Irreduzibilitätsfragen I, Sitzungsberichte Preuss.
Akad. Wiss. Phys.-Math. Klasse 14 (1929), 125–136.
Also in Gesammelte Abhandlungen, Band III, 140–151.
MR0462893

[45] Shanok C, Convex polyhedra and criteria for irreducibil-
ity, Duke Math. J. 2 (1936), no. 1, 103–111. MR1545909

[46] Valiron G, Fonctions analytiques, Presses Universitataires
de France, Paris, 1954. MR0061658

[47] Williams K,Grace Hopper: Admiral of the Cyber Sea, Naval
Institute Press, Annapolis, MD, 2004.

MARCH 2019 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 339



FEATURED TITLE FROM

Structure of Algebraic 
Groups and Geometric 
Applications
Michael Brion, University of Grenoble 
I, Martin d’Heres, France, Preena 
Samuel, Institute of Mathematical 
Science, Tamilnadu, India, and V. 
Uma, Indian Institute of Technology, 
Chennai, India

This book originates from a series of 10 lectures given by Michel 
Brion at the Chennai Mathematical Institute during January 2011. 
The book presents Chevalley’s theorem on the structure of con-
nected algebraic groups, over algebraically closed fields, as the 
starting point of various other structure results developed in the 
recent past.

Chevalley’s structure theorem states that any connected algebraic 
group over an algebraically closed field is an extension of an abe-
lian variety by a connected affine algebraic group. This theorem 
forms the foundation for the classification of anti-affine groups 
which plays a central role in the development of the structure 
theory of homogeneous bundles over abelian varieties and for the 
classification of complete homogeneous varieties. All these results 
are presented in this book.

Hindustan Book Agency; 2012; 128 pages; Softcover; ISBN: 
978-93-80250-46-5; List US$48; AMS members US$38.40; Order 
code HIN/55

Titles published by the Hindustan Book Agency
(New Delhi, India) include studies in advanced

mathematics, monographs, lecture notes, and/or
conference proceedings on current topics of interest.

Discover more books at bookstore.ams.org/hin.

Publications of Hindustan Book Agency are distributed within the Americas by the
American Mathematical Society. Maximum discount of 20% for commercial channels.

Credits

Figures 1 and 2, Hagley Museum and Library “Sperry Corpo-
ration, UNIVAC Division” collection of photographs and
audiovisual materials. Reproduction is courtesy of the
Unisys Corporation.

Figures 3 and 8 are courtesy of the Division of Medicine and
Science, National Museum of American History, Smithso-
nian Institution.

Figure 4 is courtesy of Archives and Special Collections, Vassar
College Library.

Figure 5 is courtesy of Graduate School of Arts and Sciences,
Yale University, Student Records (RU 262), Manuscripts
and Archives, Yale University Library. Reproduction in
consultation with family representatives Roger and Deb-
orah Murray.

Figure 6 is courtesy of Harvard University Press. Reproduc-
tion authorized and permitted upon publication by the
President and Fellows of Harvard College.

Figure 7 is courtesy of GraceMurrayHopper Collection, Archives
Center, National Museum of American History, Smithso-
nian Institution.

Figure 9 was created by the author using TikZ.
Figures 10 and 11 are courtesy of Manuscripts and Archives,

YaleUniversity Library. Reproduction of details fromGrace
Murray Hopper’s PhD dissertation [19] in consultation
with family representatives Roger and Deborah Murray.

Author photo was taken by Joe Rabinoff in Salt Lake City,
Utah, July 2015. Reproduction is courtesy of Joe Rabinoff.

340 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 3


